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A comparison of test scoring methods in the presence of test speededness 

 

Introduction 

There are many reasons why examinees might not provide answers to all items on a test. 

For example, answers may be omitted because an examinee carelessly and inadvertently skipped 

an item or entered the answer on the wrong line of the answer sheet. In such instances, the data 

are said to be missing at random, meaning that the probability that an observation ( ijY ) is 

missing is unrelated to the other missing observations after controlling all the observed data 

(Little & Rubin, 1987). Rubin (1976) proved that, under direct maximum likelihood and 

Bayesian estimation, data missing at random can be ignored, without affecting parameter 

estimation.  

Other sources of nonresponse may be more systematic, such as when an examinee has 

insufficient time to consider answering the items. The effects of time limits on test performances 

have been referred to as speededness effects (Evans & Reilly, 1972). When examinees become 

speeded, their performance on items at the end of the test may change. Examinees who are 

hurried may find end-of-test items to be harder than do examinees with ample time, or may 

altogether fail to complete them. As a result, speededness has been shown to cause local item 

dependence (LID; Yen, 1993) among the items at the end of the test. Because of the systematic 

pattern of omitted responses among end-of-test items in speeded tests, these omitted responses 

cannot be classified as missing at random. 

In the presence of test speededness, the parameter estimates of item response models 

can be poorly estimated, particularly for items located near the end of tests (Douglas, Kim, 
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Habing, & Gao, 1998; Oshima, 1994) and for slow-working examinees. Augmenting this 

perspective, Bolt, Cohen, and Wollack (2002) proposed a mixture Rasch Model (MRM) for 

reducing contamination in item difficulty estimates due to speededness, and concluded that the 

parameter estimates obtained for end-of-test items in the nonspeeded class more accurately 

approximated their difficulties when administered under non-speeded conditions. The MRM 

was extended to the 2-parameter logistic model (2PLM) and the 3-parameter logistic model 

(3PLM) by Bolt, Mroch, and Kim (2003).  

In the past several years, a few models have been developed that model test 

speededness, in an attempt to improve the estimation of parameters for items at the end of the 

test (e.g., Yamamoto & Everson, 1997; Bolt et al., 2002; Bolt et al., 2003; Wollack, Cohen, & 

Wells, 2003). However, few simulation studies have been conducted to focus on the estimation 

of ability parameters when there are missing or abnormal responses due to test speededness. In 

spite of their success in accounting for test speededness, mixture item response theory (IRT) 

models have not previously been studied to evaluate ability estimation procedures for speeded 

tests with missing data. However, at least from a conceptual perspective, missing responses to 

end-of-test items would seem to be a rich source of information about the appropriateness of the 

time limits for certain individuals.   

In this study, we examine the recovery of examinee ability parameters in the presence 

of speeded test data with some omitted responses among end-of-test items. Recovery is studied 

under three estimation procedures and two ways of scoring omitted responses. Data were 

simulated for three different distributions of examinee ability, two amounts of speededness, and 

two rates of omitting end-of-test items. 
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Methods 

Simulation Design  

The speededness-generating model (SGM; Wollack & Cohen, 2004) was used to 

simulate the responses affected by test speededness. This model is given by:  
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where )( jiP θ  is the probability of examinee j answering item i correctly under the 2PLM, ci is 

a pseudo-guessing parameter, and, )10( ≤≤ jj ηη  and )0( jj λλ ≤  are the speededness point 

parameter and speededness rate parameter of examinee j, respectively. The function min(x, y) 

selects the smaller of the two values, x and y. jη  equals the percentage of items, proceeding 

from the beginning of the test, that will be completed before examinee j first experiences 

speededness. Therefore, smaller values of jη  correspond to examinee j becoming speeded 

earlier in the test. For example, 75.=jη  indicates that examinee j becomes speeded three-

quarters of the way through the test. Once an examinee passes the speededness point, 

1 j
i
n

η  − −    
 is raised to the power jλ , which serves to control the speed at which *

ijP  

decreases. For ( jη , jλ ) pairs causing min(x, y) ≈ 0, *
ijP  approaches ci. Examinees with 1=jη  

or 0=jλ  are not speeded for any items. In such cases, *
ijP  reduces to the 3PLM. 

As shown in Table 1, the design of the simulation study includes 12 conditions, 

resulting from three fully crossed factors: the location of the ability distribution, the amount of 

speededness (i.e., the percentage of examinees for whom the test is speeded), and the rate of 
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missing responses. The number of items and examinees in each condition were fixed as 100 and 

2,000, respectively.  

------------------------------------------------------- 

Insert Table 1 About Here 

------------------------------------------------------- 

Item parameters (item discrimination (ai), item difficulty (bi), and item guessing (ci)) 

and examinee parameters (ηj and λj) were generated from the following distributions for the 12 

conditions. 

)5.0,0(log~ normala  

)1,0(~ normalb  

)17,5(~ betac  

)80,120(~ betaη  

)1,912.3(log~ normalλ  

Ability parameters were generated from normal distributions with a standard deviation 

of 1. However, the location of the mean of the distribution was manipulated to simulate groups 

of higher or lower ability. The mean values were set at either −1, 0, or 1. Also, it should be 

noted that by using )80,120(~ betaη , examinees were, on average, simulated to become 

speeded around the 61st item. The first simulated speeded item was between item 53 and item 67 

for roughly 95% of the speeded examinees. 

In addition, two amounts of speededness were simulated: low and high. The low 

speededness was simulated by having 30% of the total number of examinees as a speeded group, 

while the high speededness was simulated by having 70% of the examinees speeded. Among the 
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2,000 examinees, item responses for 600 (or 1,400) speeded examinees were generated using the 

above-specified parameters, while item responses for the remaining nonspeeded examinees were 

generated by fixing 1=jη  and 0=jλ , which indicates the 3PLM.  

Finally, two different rates of missing responses due to test speededness were 

simulated: 20% and 40%. It should be noted that these values indicate the percentage of omitted 

responses among the items showing speededness, not among the total number of items. That is, 

for an examinee who is speeded on the last 40 items, responses for 8 of those items will be 

simulated as missing in the 20 % condition, and 16 will be missing in the 40 % condition. In 

terms of the total responses for all examinees, the rates of missing range from approximately 

2.4% (40% speeded items x 20% omitted responses x 30% speeded examinees) to 

approximately 11.2% (40% speeded items x 40% omitted responses x 70% speeded examinees) 

of all responses. Missing responses were simulated to be among the last items on the test. 

However, because item parameters in a mixture IRT model cannot be estimated when all 

examinees in a particular group omit an item, missing responses were simulated using an odd-

even approach. In this approach, each simulated examinee was issued an ID number in 

sequential order, beginning at 1. Responses for the last (20% or 40% of the) odd numbered 

items on the test were deleted for odd numbered speeded examinees, and responses for the last 

even numbered items were deleted for even numbered speeded examinees. 

Estimation  

Markov chain Monte Carlo (MCMC) algorithms have received increasing attention in 

IRT because they offer great promise in estimating more complex types of item response models 

(Baker, 1998; Patz & Junker, 1999a, 1999b; Kim, 2001; Wollack, Bolt, Cohen, & Lee, 2002) 
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and have been found to be particularly useful in deconvolving mixture distributions (Robert, 

1996), including mixture item response models (Rost, 1990; Bolt, Cohen, & Wollack, 2001).  

Each simulated dataset was analyzed by three different estimation algorithms. 

Estimation of the 3PLM parameters was done both using marginal maximum likelihood (MML; 

Bock & Lieberman, 1970) estimation and Bayesian estimation. MML estimates of item 

parameters, hereafter referred to as the 3PL-MML condition, were obtained using the computer 

program MULTILOG (Thissen, Chen, & Bock, 2003). Bayesian estimates were obtained using 

MCMC algorithms, hereafter referred to as the 3PL-MCMC condition, implemented with the 

computer program WinBUGS 1.4 (Spigelhalter, Thomas, Best, & Lunn, 2003). Finally, a 

mixture 3PLM (M3PLM) was used, based on a MCMC algorithm using WinBUGS. To estimate 

parameters under the 3PL-MCMC and M3PLM conditions, each model parameter was sampled 

from its full conditional distribution 10,000 times. The initial 5,000 draws were discarded for 

the burn-in. Parameter estimates were taken as the mean of the remaining sampled values. 

Group membership was estimated for each examinee as the modal group (speeded or 

nonspeeded) among all sampled values after burn-in.   

Each of the three estimation algorithms was applied twice to each dataset, once by 

scoring missing data as incorrect and once by treating missing data as omitted. Therefore, six 

different procedures of estimating examinee ability were used for each condition.  

Evaluative measures  

Several different evaluative measures were obtained to investigate the relative 

performance of ability estimation procedures. Root mean square errors (RMSE) and Pearson 

correlations were computed between generating and estimated ability parameters for all six 
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estimation procedures. The correlations were obtained both for the whole examinee group and 

for the two separate groups (nonspeeded and speeded).  

 

Results 

The means and standard deviations of the raw scores for 12 data sets are shown in Table 

2. Mean scores increased as the mean of the generating ability distribution increased. Also, 

mean scores were higher when 30% of the examinees were speeded than when 70% of the 

examinees were speeded. The standard deviations ranged from 10.91 to 15.87. Standard 

deviations also tended to increase with the mean of the ability distribution, but was relatively 

unaffected by the amount of speededness. The Cronbach α  ranged from .83 to .93, and 

increased as mean ability increased. 

------------------------------------------------------- 

Insert Table 2 About Here 

------------------------------------------------------- 

The proportion of correct group membership classification for the two scoring methods 

under the M3PLM is shown in Table 3. The range varied from 84% to 99.8%. The average for 

the omitted scoring was 93.9%, while the average for the incorrect scoring was 96.2%. 

Therefore, in general, scoring missings as incorrect recovered the underlying group 

memberships slightly better than scoring missings as omitted.  

------------------------------------------------------- 

Insert Table 3 

------------------------------------------------------- 
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RMSE was calculated as the square root of the average squared difference between the 

estimated and true ability parameter, after first scaling them onto a common ability metric. 

Because IRT parameters are invariant up to a linear transformation, solutions from different 

models and across different datasets will not be comparable unless they are first transformed to 

a common scale. Because the purpose here was to assess parameter recovery, the scale of the 

underlying generating parameters was taken to be the base scale to which all others were 

equated. Parameters were equated to the base scale using the test characteristic curve method 

(Stocking & Lord, 1983) as implemented in the computer program EQUATE (Baker, Al-Karni, 

& Al-Dosary, 1991). To ensure that only nonspeeded items were used for equating (Wollack et 

al., 2003), items 1 through 50 were used as the anchor items for purposes of estimating the 

equating coefficients. These coefficients were then used to transform all ability estimates onto 

the base scale. 

Table 4 illustrates the RMSE values for the different estimation procedures, which 

ranged from 0.468 to 1.486. For the 3PL-MML and 3PL-MCMC models, the omitted scoring 

consistently showed smaller RMSEs than the incorrect scoring. However, for the M3PLM, 

scoring missings as omits produced smaller RMSEs when the mean of the ability distribution 

was −1, but larger RMSEs when the mean was 0.0 or 1.0. Across the 12 conditions, scoring 

missing data as incorrect under the M3PLM showed the smallest RMSE, averaging just 0.567. 

The M3PLM’s RMSE for the omitted scoring was somewhat larger, 0.621, but was still 

considerably smaller than the RMSEs for either of the other two models. On the other hand, the 

RMSE for the 3PL-MML scoring missing as incorrect was 0.976, the largest among the six 

scoring methods.  
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The mean of the ability distribution appeared to influence the quality of recovery. 

RMSE values were smallest when ability was sampled from a distribution with mean of 0.0. 

This is not surprising because the item difficulties were also generated with a mean of 0.0. Also, 

in general, RMSEs were larger in the N(1, 1) condition than in the N(−1, 1) condition. This may 

be attributable to the distribution of item difficulty parameters in the simulated 100-item test. 

Though the test was of average difficulty (mean = 0.01), five of the seven most extreme items, 

and the three most extreme items, were all negative. 

------------------------------------------------------- 

Insert Table 4 About Here 

------------------------------------------------------- 

For the 3PLM in both estimation algorithms (MML and MCMC), the differences 

between omitted and incorrect scoring methods tended to be large. In particular, this tendency 

was severe when there were a smaller number of examinees (30% amount of speededness) in 

the speeded group and a large number of speeded items were left missing (40% rate of missing). 

The difference between the omitted and incorrect scoring methods appeared less severe in the 

presence of 70% amount of speededness than a 30% amount of speededness.  

Tables 5 and 6 show the Pearson correlations between the estimated and true ability 

parameters. Table 5 shows the correlations for the whole examinee group, while Table 6 shows 

the correlations separately for the nonspeeded and speeded groups. In Table 5, the correlations 

range from 0.390 to 0.944. Similar patterns in the results of RMSE were found. In general, the 

omitted scoring consistently showed larger correlations than the incorrect scoring regardless of 

which estimation method was used. There were no substantial differences among the three 

ability distributions.  
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The correlations from the omitted scoring under the M3PLM appeared to be the largest 

among the six scoring methods across all 12 conditions, showing the range from 0.896 to 0.944. 

For the M3PLM, correlations looked very similar for the two scoring methods (omitted and 

incorrect) across all 12 conditions, though the omitted scoring conditions provided higher 

correlations in most cases. The 3PLM correlations (both MML and MCMC) were poor when 

missing responses were scored as incorrect, but were smallest under the 3PL-MML. Also, for 

the 3PLM, the differences between omitted and incorrect scoring methods tended to be large 

when 40% of items were missed among the speeded items. In particular, this tendency was 

severe when there were a small number of examinees in the speeded group (30% amount of 

speededness). By comparing two amounts of speededness for the 3PL-MML and 3PL-MCMC, 

the differences between omitted and incorrect scoring procedures were less severe in the 70% 

amount of speededness condition than in the 30% condition.  

------------------------------------------------------- 

Insert Table 5 and 6 About Here 

------------------------------------------------------- 

As shown in Table 6, the within-group correlations varied from 0.150 to 0.957. It 

should be noted that the correlations for all three models were based on the true group 

membership. The correlations for the M3PLM based on estimated group membership were 

slightly lower than those based on the true membership (the average difference was just 0.004). 

Consistent with the results in Tables 5, the omitted scoring under the M3PLM showed larger 

correlations than the other scoring procedures, while the incorrect scoring under the 3PL-MML 

showed the smallest correlations, on average. The differences between the omitted and incorrect 

scoring under the M3PLM appeared to be very small for all 24 cases.  
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In general, the nonspeeded groups showed similar correlations across the six scoring 

methods. This was especially true when there were large number of examinees in nonspeeded 

group (30% amount of speededness) and there was a small number of missing responses (20% 

missing rate), the correlations for the nonspeeded groups were nearly identical to each other for 

the six scoring procedures. Also, when there were a large number of examinees in speeded 

groups (70% amount of speededness), the correlations for the speeded groups were similar 

across the scoring procedures. The severe differences were detected for speeded groups in the 

30% amount of speededness conditions. In particular, when a large number of missing responses 

(40% rate of missing) were present, the differences among the six scoring methods were 

substantial. The lowest correlations were for the speeded group under the 3PL-MML when the 

amount of speededness was 30 %. 

 

Conclusion and Discussion 

Results from this simulation study would appear to have several implications for how 

practitioners choose scoring procedures for missing responses in the presence of test 

speededness. First, the M3PLM recovered the underlying ability metric better than either of the 

other two estimation techniques. Second, the omitted scoring generally worked better than the 

incorrect scoring. By combining the two results, the omitted scoring under the M3PLM 

appeared generally to be the best though there were some conditions for which scoring missing 

as incorrect led to better estimation in the M3PLM. Uniformly, the incorrect scoring under the 

3PL-MML appeared to be the worst method. Third, for the 3PLM, the differences between 

omitted and incorrect scoring procedures tended to be large when a large number of items were 

missing among the speeded items. In particular, when there were a small number of examinees 
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in the speeded group, the difference appeared to be more severe. Fourth, when there is a large 

amount of speededness (70% amount of speededness), there is relatively small difference 

between omitted and incorrect scoring in terms of ability estimation. Fifth, there were small 

differences among the three ability distributions, with recovery being slightly improved when 

the ability distribution matched the mean of the item difficulty distribution. Seventh, the six 

scoring procedures showed similar results in terms of ability metric recovery for nonspeeded 

groups. On the other hand, the two 3PL algorithms did not work properly for speeded groups 

when missing responses were treated as incorrect. For estimating ability parameters of speeded 

group, the scoring procedure should be selected with caution. Finally, when scoring missings as 

incorrect, this study replicates the findings of Bolt et al. (2003) in that there were very large 

differences between the M3PLM and the 3PLM models. However, it is interesting to note that 

the differences between the M3PLM and the 3PLM were much less pronounced when missings 

were treated as omitted. Still, it appears as though the differences are significant enough to 

warrant using a M3PLM if speededness effects are believed to exist.   

When a test is suspected to be speeded to some degree, important consideration must be 

given to the scoring of omitted or otherwise speeded items. Even though the evaluation of 

ability estimation procedures is very important for the successful application of IRT, results 

from different treatments of missing data in estimating ability, particularly systematically 

missing data such as for speeded tests, have not been fully studied. Recommendations from this 

study should help test developers and measurement specialists select and better understand test 

scoring procedures for working with incomplete data due to test speededness.  
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Limitations 

Fixed numbers of examinees and items were used in this simulation study. The impact 

of varying these, particularly by choosing different sample sizes, needs to be considered in 

future studies. SGM (Wollack & Cohen, 2004) was used to simulate the responses affected by 

test speededness. However, reasonable and realistic distributions for ηj and λj are still being 

established. Similarly, other models (e.g., hybrid model of Yamamoto & Everson (1997)) could 

have been used to generate speeded datasets, and more realistic approaches for simulating 

systematically missing responses need to be investigated. Finally, this study represents a fairly 

extreme scenario which is unlikely to occur in practice. It would be fairly uncommon to 

encounter an educational test that was speeded for as many as 70% of the examinees and that 

became speeded only 60% of the way into the test. However, by studying the robustness of 

models under such extreme situations, it is possible to gain an appreciation for their differences. 

The application of these models to real data and to more subtle amounts of speededness will be 

an area for future exploration.  
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Table 1. Simulation design 

 

Ability Distribution Amount of Speededness Rate of Missing 
20% 30% (600 examinees) 40% 
20% ( )1,1~ −Nθ  

70% (1400 examinees) 40% 
20% 30% (600 examinees) 40% 
20% 

( )1,0~ Nθ  
70% (1400 examinees) 40% 

20% 30% (600 examinees) 40% 
20% 

( )1,1~ Nθ  
70% (1400 examinees) 40% 
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Table 2. Descriptive statistics based on raw scores 

 

Ability 
Distribution 

Amount of 
Speededness 

Rate of 
Missing Mean Standard 

Deviation Cronbach α  

20% 44.71 13.02 .88 30% 40% 44.26 13.30 .88 
20% 39.76 10.91 .83 ( )1,1~ −Nθ  

70% 40% 38.69 11.13 .84 
20% 56.36 15.10 .91 30% 40% 55.88 15.44 .92 
20% 49.30 13.03 .88 

( )1,0~ Nθ  
70% 40% 48.20 13.34 .89 

20% 67.61 15.43 .93 30% 40% 67.13 15.87 .93 
20% 58.62 14.23 .91 

( )1,1~ Nθ  
70% 40% 57.53 14.66 .92 
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Table 3. Correct classification of group membership in M3PLM 

 

Scoring of Missing Ability 
Distribution 

Amount of 
Speededness Rate of Missing 

Omitted Incorrect 
20% 88.6% 95.2% 30% 40% 86.8% 96.6% 
20% 90.1% 90.5% 

( )1,1~ −Nθ  
70% 40% 88.0% 84.0% 

20% 95.7% 98.3% 30% 40% 94.1% 98.6% 
20% 95.8% 97.9% ( )1,0~ Nθ  

70% 40% 95.1% 95.3% 
20% 98.8% 99.7% 30% 40% 98.2% 99.8% 
20% 98.0% 99.1% ( )1,1~ Nθ  

70% 40% 97.2% 99.4% 
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Table 4. Root Mean Square Errors 

 

3PL-MML 3PLM-MCMC M3PLM-MCMC Ability 
Dist. 

Amt. 
of 

Speed 

Rate 
of 

Missing Omitted Incorrect Omitted Incorrect Omitted Incorrect 
20% 0.766 0.848 0.654 0.797 0.523 0.621 30% 40% 0.749 1.427 0.714 1.049 0.528 0.625 
20% 0.744 0.833 0.647 0.710 0.521 0.642 

( )1,1−N
 70% 40% 0.747 0.829 0.786 0.761 0.536 0.677 

20% 0.678 0.963 0.627 0.987 0.515 0.468 30% 40% 0.597 0.987 0.588 1.016 0.514 0.469 
20% 0.606 0.781 0.679 0.703 0.545 0.488 

( )1,0N  
70% 40% 0.674 0.851 0.664 0.749 0.533 0.489 

20% 1.121 1.134 0.926 1.486 0.776 0.569 30% 40% 0.739 1.133 0.961 1.275 0.795 0.565 
20% 0.744 0.962 0.994 0.900 0.820 0.594 ( )1,1N  

70% 40% 0.904 0.965 0.979 0.917 0.849 0.591 
  mean 0.756 0.976 0.768 0.946 0.621 0.567 
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Table 5. Pearson correlations for the whole examinee group 

 

 

 

 

 

3PL-MML 3PLM-MCMC M3PLM-MCMC Ability 
Dist. 

Amt. 
of 

Speed 

Rate 
of 

Missing Omitted Incorrect Omitted Incorrect Omitted Incorrect 
20% .861 .649 .863 .763 .910 .907 30% 40% .878 .424 .879 .443 .910 .905 
20% .833 .764 .848 .804 .896 .888 

( )1,1−N
 70% 40% .848 .690 .855 .745 .896 .871 

20% .834 .462 .832 .438 .944 .943 30% 40% .914 .423 .861 .390 .944 .943 
20% .914 .693 .794 .765 .929 .927 

( )1,0N  
70% 40% .798 .644 .805 .712 .929 .926 

20% .488 .422 .640 .439 .938 .937 30% 40% .908 .394 .704 .415 .939 .939 
20% .910 .597 .655 .649 .916 .916 

( )1,1N  
70% 40% .654 .568 .666 .621 .919 .918 

  mean .820 .561 .784 .599 .923 .918 
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Table 6. Pearson correlations for nonspeeded and speeded groups 

 

3PL-MML 3PLM-MCMC M3PLM-MCMC Ability 
Dist. 

Amt. 
of 

Speed 

Rate 
of 

Missing 
Group 

Omitted Incorrect Omitted Incorrect Omitted Incorrect 
NS .925 .910 .926 .920 .924 .923 20% S .862 .644 .866 .866 .890 .890 
NS .926 .893 .927 .893 .924 .921 30% 

40% S .871 .155 .874 .225 .891 .888 
NS .903 .822 .892 .861 .924 .928 20% S .864 .834 .869 .860 .886 .879 
NS .914 .772 .898 .815 .924 .921 

( )1,1−N
 

70% 
40% S .871 .810 .872 .849 .885 .871 

NS .946 .943 .948 .941 .957 .957 20% S .865 .185 .869 .219 .919 .918 
NS .913 .942 .953 .940 .957 .957 30% 

40% S .916 .150 .885 .168 .920 .918 
NS .913 .798 .875 .814 .954 .954 20% S .914 .841 .872 .870 .919 .916 
NS .882 .757 .886 .756 .954 .955 

( )1,0N  
 

70% 
40% S .875 .828 .876 .862 .919 .916 

NS .944 .943 .931 .943 .951 .952 20% S .289 .211 .733 .455 .910 .906 
NS .907 .942 .932 .941 .951 .951 30% 

40% S .910 .172 .783 .471 .913 .911 
NS .909 .725 .789 .678 .952 .953 20% S .911 .788 .810 .823 .900 .900 
NS .781 .722 .802 .632 .953 .954 

( )1,1N  

70% 
40% S .810 .782 .816 .823 .904 .903 

 

 

 


